S cílem usnadnit uživatelům používat naše webové stránky využíváme cookies. Kliknutím na tlačítko "OK" souhlasíte s použitím preferenčních, statistických i marketingových cookies pro nás i naše partnery. Funkční cookies jsou v rámci zachování funkčnosti webu používány po celou dobu procházení webem. Podrobné informace a nastavení ke cookies najdete zde.

Fotovoltaika - co to vlastně je ?

22.02.2023

Fotovoltaika - co to vlastně je ?

Fotovoltaika je metoda přímé přeměny slunečního záření na elektřinu (stejnosměrný proud) s využitím fotoelektrického jevu na velkoplošných polovodičových fotodiodách.

Fotovoltaika je metoda přímé přeměny slunečního záření na elektřinu (stejnosměrný proud) s využitím fotoelektrického jevu na velkoplošných polovodičových fotodiodách. Jednotlivé diody se nazývají fotovoltaické články a obvykle jsou spojovány do větších celků - fotovoltaických panelů. Samotné články jsou dvojího typu - krystalické a tenkovrstvé. Krystalické články jsou vytvořeny na tenkých deskách polovodičového materiálu, tenkovrstvé články jsou přímo nanášeny na sklo nebo jinou podložku. V krystalických technologiích převažuje křemík, a to monokrystalický nebo multikrystalický, jiné materiály jsou používány pouze ve speciálních aplikacích. Tenkovrstvých technologií je celá řada, například amorfní křemík a mikrokrystalický křemík, jejichž kombinace se nazývá tandem, dále tellurid kadmia a CIGS sloučeniny. Díky rostoucímu zájmu o obnovitelné zdroje energie a dotacím se výroba fotovoltaických panelů a systémů v poslední době značně zdokonalila.[1][2][3]

Celková instalovaná kapacita na světě činila ke konci roku 2020 téměř 714 GW, přičemž jen za rok 2020 se zvýšila o celých 134 GW, což je o 23 % více, než v předchozím roce 2019. Tento instalovaný výkon umožňuje roční produkci na úrovni zhruba 700 terawatthodin (TWh) elektřiny.

V České republice bylo v roce 2021 instalováno celkem 9 321 nových solárních elektráren s celkovým výkonem 62 MWp. Z toho bylo 42,8 MWp instalováno na střechách českých domácností a 19,2 MWp na střechách podniků a komerčních budov.[4]

Princip

Fotony slunečního záření dopadají na přechod P-N a svou energií vyrážejí elektrony z valenčního pásu do pásu vodivostního (uvolňují je z pevných vazeb na atomy krystalové mřížky). Takto vzniklé volné elektrony se u nejjednodušších systémů odvedou pomocí elektrod přímo ke spotřebiči, případně do akumulátoru. Aby mohly být napájeny běžné domácí elektrospotřebiče na střídavý proud, je nutné doplnit střídač, který energii převede na střídavé napětí, které má velikost a frekvenci shodné s distribuční soustavou.

Nejjednodušší solární článek obsahuje dvě vrstvy s rozdílným typem vodivosti. V jedné z vrstev (materiálu typu N) převažují negativně nabité elektrony, kdežto ve druhé vrstvě (materiálu typu P) převažují „díry“, které se dají popsat jako prázdná místa, jež snadno akceptují elektrony. V místě, kde se tyto dvě vrstvy setkávají (P–N přechodu), dojde ke spárování elektronů s děrami, čímž se vytvoří elektrické pole, které zabrání dalším elektronům v pohybu z N-vrstvy do P-vrstvy.

Za normálních okolností jsou elektrony v polovodičovém materiálu pevně vázány k atomům krystalové mřížky, a materiál je tedy nevodivý. Například každý atom křemíku má čtyři valenční elektrony. Přidáním velmi malého množství prvku s větším počtem valenčních elektronů (donoru) se vytvoří oblast s vodivostí typu N, v níž se vyskytují volné elektrony, které mohou přenášet elektrický náboj. Naopak příměs prvku s menším počtem elektronů vytvoří oblast s vodivostí typu P, v níž se krystalovou mřížkou pohybují „díry“ – místa, kde chybí elektron. Při zachycení fotonu o dostatečné energii (odpovídající vlnové délce) v polovodičovém materiálu vznikne jeden pár elektron–díra. Je-li vnější obvod uzavřen, pohybují se tyto nositelé náboje opačným směrem, elektrony k záporné elektrodě a díry ke kladné.

Solární články vyžadují ochranu před vlivy prostředí, a proto se umísťují mezi ochranné vrstvy. Obvykle jsou to sklo a plastová fólie, ale používají se i dvě skla nebo jiné kombinace materiálů. Protože napětí jednoho článku je nízké, články se sériově propojují do větších panelů. Jeden solární panel poskytuje dostatek energie (současné nejvýkonnější panely až kolem 600 W) pro napájení jednoduchých zařízení, jako je rozhlasový přijímač. Pro napájení větších spotřebičů nebo ve fotovoltaických elektrárnách jsou jednotlivé solární panely propojeny do větších systémů.

Moderní technologie

V současné době se vyvíjí takzvaná třetí generace fotovoltaiky. Nosnou myšlenkou této generace je zvýšení účinnosti za použití tenkovrstvých technologií, pokud možno díky netoxickým hojně se vyskytujícím materiálům. Zvýšení účinnosti lze dosáhnout obejitím Shockleyova–Queisserova limitu, který definuje maximální účinnost fotovoltaického článku s jedním P–N přechodem, a to tak, že se použijí struktury s větším počtem P–N přechodů. Teoreticky byly navrženy i jiné principy, dosud se však nepodařilo je experimentálně ověřit. Další možností, jak zvýšit účinnost fotovoltaického článku, je modifikace spektra záření dopadajícího na P–N přechod konverzí vysokoenergetických fotonů nebo nízkoenergetických fotonů na fotony s energií, která nejlépe odpovídá fyzikálním vlastnostem P–N přechodu.

Každý z výše uvedených přístupů má své výhody a nevýhody a nacházejí se v různých stupních vývoje.

Bateriové úložiště

Fotovoltaická elektrárna může být doplněna bateriovým úložištěm, které slouží k ukládání přebytků vyrobené energie. Energie může být využita v časech, kdy je požadovaný příkon vysoký, případně při výpadku sítě.

Za nejvýhodnější typ pro tento účel jsou považovány (údaj 2020) lithium–iontové baterie.

Vývoj

Dějiny fotovoltaiky

Fotoelektrický jev byl objeven v roce 1839 francouzským fyzikem Alexandrem Edmondem Becquerelem. V roce 1876 objevili stejný efekt pro selenové krystaly Angličani William G. Adams a Richard E. Day. V roce 1905 se Albertu Einsteinovi podařilo fotoelektrický jev vysvětlit, za což v roce 1921 získal Nobelovu cenu za fyziku. Po mnoha letech (během nichž bylo učiněno mnoho vynálezů a objevů) se v roce 1954 povedlo Drylu Chapinovi, Calvinu Fullerovi a Geraldu Pearsonovi vyvinout první článek s účinností vyšší než čtyři procenta. Fotovoltaické články našly první praktické použití koncem padesátých let pro napájení družic. První družice napájená solárními panely se jmenovala Vanguard I. Tato družice byla vypuštěna na oběžnou dráhu 17. března 1958. Díky poptávce leteckého průmyslu během šedesátých a sedmdesátých let minulého století došlo k významnému pokroku ve vývoji těchto technologií.

Vlivem energetické krize v sedmdesátých letech a zvýšeného povědomí o životním prostředí se alternativní zdroje energie staly politicky zajímavými. Došlo k úpravě zákonů a vytvoření programů na podporu fotovoltaiky. Lídry v této oblasti jsou zejména Německo, USA a Japonsko.

Současnost

Globální kumulativní kapacita FV systémů

Fotovoltaické systémy ze zanedbatelné úrovně rychle rostou na celkovou světovou kapacitu 714 gigawattů (GW) na konci roku 2020. V roce 2020 se rychle rostoucí kapacita zvýšila o 134 GW, což je o 23 % více než v roce 2019. Celkový výkon všech světových solárních elektráren postavených v roce 2020 je přibližně 700 TWh. Nejrychleji rostoucími trhy jsou Čína a Spojené státy americké. Největším světovým výrobcem elektřiny z fotovoltaických panelů je Čína. Fotovoltaika je nyní po vodní a větrné energii třetím nejdůležitějším zdrojem energie z obnovitelných zdrojů, pokud jde o celosvětově instalovaný výkon (nepočítaje solární zisky a biomasu).

Zpráva Evropské asociace fotovoltaického průmyslu (EPIA) odhaduje, že fotovoltaika bude v roce 2030 uspokojovat v Evropě 10 až 15 procent poptávky po energii. Celkem má EU za cíl do roku 2030 získávat 32 procent energie z obnovitelných zdrojů. Česko má dle energeticko-klimatického plánu za cíl dosáhnout 22 %. Vzhledem k podmínkám v ČR se předpokládá, že většina bude z fotovoltaiky.

Scénář EPIA a Greenpeace „Posun paradigmatu solární generace“ (dříve zvaný jako pokrokový scénář) z roku 2010 ukazuje, že do roku 2030 by 1 845 GW fotovoltaických systémů mohlo po celém světě generovat přibližně 2 646 TWh elektřiny za rok. V kombinaci se zlepšením účinnosti využívání energie by to znamenalo uspokojení poptávky více než 9 procent světové populace po elektřině. V roce 2050 by mohlo více než 20 procent veškeré elektřiny pocházet z fotovoltaiky.

Cena fotovoltaiky se díky nepřetržitému vývoji technologií a masivní výrobě neustále snižuje (viz i graf „Vývoj ceny křemíkových solárních panelů“).[8] Nicméně v roce 2021 se tento trend změnil a cena solárních panelů roste. Přesto díky finančním pobídkám, dotacím a výhodným tarifním podmínkám pro energii z fotovoltaiky dochází v mnoha zemích k prudkému nárůstu instalací.

Budoucí vývoj

V budoucnu se očekává, že fotovoltaické panely budou ještě efektivnější a levnější díky vývoji nových materiálů a technologií. Například krystalizované perovskity, nový typ fotovoltaického materiálu, který se ukazuje jako velmi slibný pro budoucí vývoj fotovoltaiky. Navíc se očekává, že fotovoltaické panely budou čím dál více integrovány do stavebního designu, takže budou moci být použity na fasádách budov, střechách a dokonce i na silnicích.

Dalším krokem v budoucím vývoji fotovoltaiky bude zřejmě využití umělé inteligence k optimalizaci výroby elektrické energie z fotovoltaických panelů a jejich integrace do sítí elektrické energie.[zdroj?]

V neposlední řadě se očekává, že fotovoltaická energie bude hrát významnou roli při snaze o udržitelnější a ekologičtější způsoby výroby elektrické energie, což pomůže snížit emise skleníkových plynů a omezit závislost na fosilních palivech.

Užití

Výhody

  • Množství sluneční energie dopadající na zemský povrch je tak obrovské, že by současnou spotřebu pokrylo 6000krát – na zemský povrch dopadá 89 petawattů přičemž naše spotřeba činí 15 terawattů. Solární energie má také nejvyšší hustotu výkonu (celosvětový průměr je 170 W/m2) ze všech známých zdrojů obnovitelné energie.[9]
  • Během výroby elektrické energie neznečišťuje fotovoltaický systém životní prostředí a nevznikají emise skleníkových plynů. Znečištění během výroby a likvidace zařízení se dá udržet pod kontrolou za použití již známých metod likvidace elektroodpadu. Také se pracuje na vývoji technologií na recyklaci zařízení po skončení jejich užitečného života.
  • Fotovoltaické systémy vyžadují po nainstalování minimální údržbu a palivo, sluneční energie je zadarmo. Provozní náklady jsou tudíž ve srovnání s existujícími technologiemi extrémně nízké.
  • Pokud je fotovoltaický systém připojen na síť, energie může být spotřebována místně, a tudíž snížit celkové ztráty rozvodné soustavy.

Nevýhody

  • Solární energie není k dispozici v noci a za špatného počasí (mlha, déšť, sníh) je velmi nespolehlivá. Elektrická přenosová soustava tak může být ohrožena na stabilitě. Musí se proto instalovat systémy na ukládání elektřiny anebo je třeba výrobu kombinovat s dalšími zdroji.
  • Výkon fotovoltaických panelů se výrazně snižuje, pokud jsou pokryty vrstvou sněhu nebo jsou znečištěny.
  • Území zabrané solárními elektrárnami je pro daný generovaný výkon větší než území, které je při stejném výkonu nutné pro energetiku založenou na těžbě uhlí. Lze to však vyřešit využitím jinak nevyužitých povrchů střech budov.
  • Cena (solární) elektřiny je deformovaná obchodem s emisními povolenkami.
  • Výkupní cena solární energie je dotována poplatky, které platí všichni odběratelé (v ČR 27 miliard ročně).
  • Dotace prakticky znemožňují porovnání reálných nákladů solární energie oproti jiným zdrojům energie.
  • Účinnost fotovoltaických článků se pohybuje mezi 14 až 22 %.
  • Koeficient ročního využití je v ČR asi 9 až 13 % (poměr instalovaného výkonu a dosažitelného ročního výkonu), což znamená vysoké výkyvy v dodávkách do elektrické sítě

Sklon a orientace střechy

Fotovoltaické panely se mohou instalovat svisle i vodorovně. Sklon střechy není zásadní, ale ideální je od 20° do 45°. Pokud je nižší nebo naopak vyšší, celoroční ztráty na výnosech z fotovoltaiky dosahují až kolem 10 %. Maximálního výnosu za rok dosáhnou systémy se sklonem 35°. Celoroční vyváženou výrobu elektřiny zajistí sklon 45°. Při sklonu menším než 10° ztratí panely svou schopnost samočištění.

Důležitější než sklon je její orientace, přičemž je třeba vyhýbat se severní straně. Panely orientované na jih vyrábějí během celého dne a nejvíce elektřiny vyprodukují v době od 11 do 13 hodin. Pokud je orientace střechy na východ nebo západ, dojde k roční ztrátě produkce elektrické energie přibližně jen o 20 %. Nicméně rozdělení panelů na východ a západ má své výhody, produkce elektřiny ze solárních panelů je rozprostřena na celý den a především domácnostem může toto rozložení výroby vzhledem k typickému charakteru spotřeby v rodinných domech přinášet výhody.

Návratnost

Návratnost fotovoltaického zařízení je doba, po kterou je výroba elektrické energie z fotovoltaických panelů ekonomicky výhodná. To znamená, že výdaje na pořízení a instalaci fotovoltaického zařízení se v průběhu času vrátí zpět prostřednictvím úspor na fakturách za elektřinu.

Návratnost fotovoltaiky se může lišit v závislosti na několika faktorech, jako je velikost fotovoltaického zařízení, cena elektřiny v dané oblasti, výkon fotovoltaických panelů a účinnost zařízení.

Je důležité si uvědomit, že i po dosažení návratnosti bude fotovoltaické zařízení stále produkovat elektrickou energii a pokračovat tak v úspoře nákladů na elektřinu po zbytek své životnosti, která se obvykle pohybuje kolem 25-30 let.

Návratnost investice bez dotací je 10 až 15 let za předpokladu dražších energií na úrovni konce roku 2022 (8,80 Kč/kWh), přičemž bateriové systémy mají návratnost delší. Zkrácení návratnosti je možné dosáhnout pomocí dotací, což však není udržitelný model rozvoje fotovoltaiky.

Vytvořeno systémem www.webareal.cz

MDM4ODZh